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• Symbolic execution (S.E.) symbolically analyzes all paths through a 
program instead of running individual tests to evaluate

• Constraints are formulas maintained by S.E. engine that describe the 
conditions satisfied for each possible path the input could take

• z3 is an SMT solver that can check for violations of a property along 
the path in S.E. tree

• Model counter ABC counts how many inputs satisfy a constraint
• Adversarial attacks are small changes in input to a network

Background Our Contributions

• Fast brute force is much faster than complete brute force
• Complete brute force can handle more constraints

• For a single dataset, complete brute force runtime is 10 – 30 times 
greater for 2px than it is for 1px attacks. Meanwhile, fast brute force 
runtime is only 1– 2 times greater for 2px attacks.

• Estimate of runtime when checking classification of 100,000 inputs 
after adversarial attack (Iris dataset): 

Complete brute force: 1,494,180 ms (~25 minutes)
Fast brute force: 4,046.31 ms (~4 seconds)

• S.E. is faster than both brute force methods for larger number of inputs
• S.E. can compute robustness of a region with almost 

500,000,000 individual inputs to test in 28400 ms when there 
are 0 or very few adversaries, and with a 10 min timeout can 
give a sound upper bound indicating on average that at least 
150,000 adversarial examples exist

Analysis

Results

Methodology
• Four datasets
• Represented adversarial attack by changing either 1 or 2 pixels for all inputs for each network

Research Question
• Can we make a scalable quantitative verifier that measures robustness 

by determining whether a small change in input- an adversarial attack-
affects the classification of that input? 

We worked on a tool to measure network robustness.
• Added flexibility in constraints of network by implementing variable-

to-variable comparison
x0 > x1 vs. x0 > 5
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Runtime (ms)
Comp (1px) Fast (1px) Comp (2px) Fast (2px)

Iris 434 47 4498 58
Gamma 581 36 17934 50

Parkinson’s 685 49 18158 79
MNIST 485 75 4884 93

• Neural networks 
run an input 
through several
layers of
interconnected
nodes to produce an
output

• Quantized neural networks use weights with reduced precision to 
increase computation efficiency

Conclusion

• Wrote a function that runs inputs through network and evaluates output
• Compared and analyzed two methods of evaluation: complete brute 

force and fast brute force

Complete brute force
• Slow, since it requires z3 to enumerate inputs 

and check outputs
• Flexible, since input and output constraints 

can be anything

• Example constraints:
x0 > x1 y0 > y1

y1 > y2

• Our goal was to test a network’s robustness by checking how 
classification changes as small changes are made to the network input

• Our results show that fast brute force works much faster than complete
brute force; however, complete brute force is more flexible in the type 
of constraints it can handle

• Evidently, both brute force methods work well for a small number of 
inputs. Symbolic execution will work best for larger number of inputs.

Motivation

• To verify a network is to ensure it performs as expected for all possible 
inputs

• Quantitative verification does not exist for quantized networks

Fast brute force
• Fast, since z3 not required to enumerate 

inputs or check outputs
• Not as flexible, since input constraints are 

only bounds, output constraints check that 
one y is greater than rest

• Example constraints:
x0 > 5 y0 > y1

y0 > y2
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• We want to evaluate the effectiveness 
and limitations of two brute force 
approaches to compare them with S.E.
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The output y with the largest value determines the classification of the input.

Iris, complete brute force: runtime = 14.94 * (num_input) + 180
Iris, fast brute force: runtime = 0.04 * (num_input) + 46.31
Gamma, complete brute force: runtime = 16.43 * (num_input) + 38.72
Gamma, fast brute force: runtime = 0.01 * (num_input) + 35.56


