
Enhancing Symbolic Execution for More Efficient

Neural Network Verification

Brian Ozawa Burns, Anushka Lodha, Erin DeLong

November 2021

1 Research Context and Problem Statement

In recent years, neural networks have become increasingly important due to
their role in artificial intelligence and machine learning. Artificial intelligence
has had a huge impact on many fields, from automation to medicine– it has
paved the way for a safer future through self-driving cars, and has significantly
improved healthcare by making diagnoses more accurate through image anal-
ysis. For example, neural networks have been used to estimate the recurrence
rate of tumors in patients with breast cancer after judging data from lymphatic
node positive patients [7]. Evidently, neural networks have many important
applications.

Neural networks are modeled off the human brain in the way connections are
made, and are composed of layers of interconnected nodes. An input is passed
to the first layer of the network, and is multiplied by a weight depending on
the node. The input is then passed through an activation function, which de-
termines the values used as input for the next layer. This continues until the
network reaches the last layer and produces an output. To ensure that a neural
network is valid–that it performs as expected–it is necessary to verify it. To test
a neural network is to feed the network an input with a known output in order
to see if the output generated by the network matches the expected output.
However, even after testing a network, we cannot provide any guarantees about
its behavior unless we can test every input. To test all possible inputs is the
process of network verification.

A single network can be interpreted in various ways based on its numerical
precision. Figure 1 demonstrates three types: idealized (real-valued) networks,
floating-point networks, and quantized networks. Idealized networks are those
where each value in the network has infinite precision–in reality, this is impos-
sible, but there has been research dedicated to verifying this abstraction. In
floating-point networks, values are rounded based on the “IEEE 754 standard,”
but verification methods are highly inefficient [5]. Finally, quantized, or fixed-
point, networks have become increasingly common–these networks have weights
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Figure 1: This diagram depicts three representations of the same network. Note
that these values are hypothetical; computations are actually run with base-2
representations of these decimal numbers [5].

with reduced precision; by lessening the memory needed to represent informa-
tion, computation efficiency increases [6].

Scalability is one of the main issues that arises when attempting to verify a
neural network. Despite the advantages of quantized networks, current verifica-
tion methods cannot handle large quantized neural networks efficiently–it has
been shown that verification is PSPACE-hard, which is very complex. Therefore
we wish to create new verification techniques to expedite this process [5].

To verify a neural network, one could, in theory, run every possible input through
a neural network. However, there are often far too many possible inputs to
test, and verifying a neural network with brute force is usually unrealistic. One
method of verifying a neural network is symbolic execution, which is the method
our proposed solution relies on.

Like concrete inputs, symbolic execution tests a program; however, it abstractly
expresses concrete inputs using symbols like variables and inequalities [5]. These
variables can then be used as inputs to the program and can trace every possible
path that the program could take. These paths are all different because there
are many different ways a program can execute based on a given input. For ex-
ample, some inputs will cause programs to enter if-statements, while others will
not. The specific method by which a symbolic execution engine accomplishes
this is that it maintains a formula, also called a constraint, that describes the
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Figure 2: [2]

Figure 3: The symbolic execution tree branches at every condition in Figure
2. σ represents the symbolic store that matches variables with expressions of
concrete or symbolic values, while π denotes the constraints for the path [2].
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conditions satisfied for each explored control flow path (each possible path that
an input could take through a program). At every step in the symbolic execution
tree, we use a Satisfiability Modulo Theory (SMT) solver, specifically Microsoft
Research’s Z3, to check whether there are any violations of the property along
the path. The SMT solver essentially verifies whether the formula can be sat-
isfied by substituting the program’s symbolic arguments with concrete values
[2]. If the formula can be satisfied, the SMT solver returns one of the possible
values [2].

Model counting is another technique that we will use in our research. The
one we will be using is the Automata-Based Model Counter, also called the
ABC model counter [1]. A model counter is used to count how many possible
concrete inputs satisfy a particular constraint. However, model counts do not
return any specific values that will satisfy the constraints.

Model counting is beneficial as it allows for quantitative verification, which
determines how often a property is satisfied. This is useful because it offers
a probabilistic guarantee of the behavior of the network. Such a probability is
necessary when, for example, testing the safety of autonomous vehicles that rely
on neural networks [8]. A very simplified way of looking at it is, rather than
knowing whether a car will crash or not, it is more helpful to know how likely
it is to crash. Currently, quantitative verification techniques exist for binary
and floating-point neural networks, but do not exist with greater than binary
precision [3, 4, 9]. We hypothesize that we can implement this and use model
counting to decrease the runtime of symbolic execution.

Overview of our proposal:

Symbolic execution is an effective verification technique, and we will attempt
to optimize it through model counting so that it can handle larger quantized
neural networks in a more reasonable amount of time; this will help us achieve
our goal of making verification more scalable. In addition to using model count-
ing to optimize quantized network verification, we will attempt to determine
a way to know for which situations using brute force would be more efficient
than running symbolic execution. Sometimes, if there are few enough inputs, it
would be possible to get through all of them using brute force in a reasonable
amount of time. If we can find this threshold of the number of inputs for which
brute force is faster, then we could test the network using the concrete inputs
rather than following every possible path in the symbolic execution tree that
may or may not lead to a solution.

Finally, we will attempt to implement increased flexibility of user input for
symbolic execution. Through methods that will be discussed in the following
section, adding flexibility may also reduce the runtime of verification and, ulti-
mately, make it more scalable.
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2 Proposed Solution

There are two solutions that could be implemented in parallel and would po-
tentially make network verification more efficient and flexible.

2.1 Optimization

The first solution involves running a model count before symbolic execution to
find the maximum number of solutions for a set of constraints. This leads to
two possible optimizations.

First, by knowing the maximum number of solutions prior to searching, the
solver will be able to determine if it is appropriate to stop and will not search
the paths of the remaining branches. For instance, if the model counter returns
ten total solutions, then the solver will stop after finding the tenth solution,
ignoring the other branches which could not possibly be satisfiable because this
would mean there are more than ten solutions.

Second, with constraints that allow for fewer inputs, verification with brute force
is actually more efficient than verification with symbolic execution. Hence, we
would also like to look into the maximum number of solutions (determined by
model counting) for which brute force techniques are more efficient than sym-
bolic execution. Then, for networks that would be more efficiently verified using
brute force, we will use this technique instead of symbolic execution to speed
up verification.

2.2 Flexibility

When a neural network is given input, the result is a set of probabilities rep-
resenting the chance of each distinct output. Currently, the verifier allows for
constraints where variables are compared to constant values. By instead com-
paring the probabilities of different output variables to one another, we could
gain an understanding of which single output most accurately matches the in-
put. For instance, consider a network that determines that a character has a
0.6 probability of being ‘C’ and a 0.7 probability of being ‘O’. With only one
variable comparisons with numbers allowed, it would be difficult to set up a
constraint that checks if ‘C’ is most likely to be the correct solution. For exam-
ple, we would have to test multiple constraints with different thresholds, such
as C > 0.1 and O <= 0.1, then C > 0.2 and O <= 0.2, and so on, where
each of these is a different test. This is time-intensive. Implementing the ability
to compare variables to each other in constraints would let the user check this
property with one simple set of constraints; we would just need to run one ver-
ification with C > O. Because implementing this flexibility will reduce testing
time, it will contribute to our goal of optimizing verification.

Expanding the type of constraints that the user can give to the neural net-
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work allows for more flexible verification. Currently, “or”’s are not allowed in
constraints. Without “or”’s, we need to quantitatively verify a constraint “a or
b” by first verifying “a”, then “b”, then “a and b”, and getting the respective
model counts for each. To get the count for “a or b”, we have to add the model
count for the verification of “a” to the model count for the verification of “b,”
then subtract the model count for the verification of “a and b.”

The SMT solver we will be using, Z3, automatically converts constraints to the
ideal form known as conjunctive normal form (CNF), in which Boolean clauses
of disjunctions (logical “or”s) are joined by conjunctions (logical “and”s), be-
fore solving. However, we may be able to speed up execution by checking if user
input is already in CNF or by converting the input to CNF ourselves as it is
being read in.

3 Evaluation and Implementation

3.1 Evaluation

In order to evaluate the effectiveness of model counting, we plan to find a con-
straint where, after applying a model count, we discover that we can stop search-
ing for solutions to the path early since we have found all possible inputs that
satisfy the constraints for that path according to the model counter. We intend
to compute how much time was taken with the early stop as well as without it,
and compare the times to show how the model counting method is more efficient.

In order to evaluate the effectiveness of using brute force in certain situations,
we will first find a rule that dictates when to use brute force versus when to
use symbolic execution. Then, we will find a number of sets of constraints that
satisfy this rule; sets of constraints that should be faster when evaluated using
brute force. We will run the constraints using brute force, run them again with
symbolic execution, and see how much time was saved.

The flexibility in user input methods does not lend itself to numerical evalu-
ation quite as easily. We intend to find meaningful constraints that can only be
expressed using the new input method to show that our method of expressing
user input allows the user to check constraints that they otherwise would not
be able to without multiple time-consuming full verification runs [5].

3.2 Timeline

Fall 2021

• Week 8-10

– Read Z3 documentation and become familiar with it
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Winter 2022

• Weeks 1-2

– Implement flexibility to compare variables to each other in the input
constraints, not just constants.

• Weeks 3-6

– Add model counting before symbolic execution

• Weeks 7-10

– Run tests to determine good rule for brute force solution.

Spring 2022

• Weeks 1-2

– If brute force testing has concluded: include ORs to the conditions
for increased flexibility, incorporate CNF checking, and add CNF
conversion

• Weeks 3-4

– Organize data, form conclusions, make figures

• Weeks 5-7

– Paper draft planning

• Weeks 8-10

– Final drafts

Note 1: Several weeks have been dedicated to brute force testing because despite
it seeming really simple (just running the program with inputs), it actually gets
really complicated and time-consuming for each test we will want to run.

Note 2: The current timeline is subject to change depending on how much time
is spent on testing the brute force approach. In addition, the current Spring
2022, weeks 1-2, tasks would be ideal to get to, but are of less significance
compared to variable comparison, model counting, and brute force solutions.

4 Changes Made After to Peer Reviews

• One concern was that our research problem was not well-motivated, and
our peers did not understand the reason why optimizing verification is
important. In the introduction, we motivated the problem better by ex-
plaining applications of neural networks, how neural networks work, and
why they are important.
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• Some sentences and term descriptions were unclear. We changed phrasing
and sentence ordering in several places, and added more detail about terms
like neural network weights and symbolic execution constraints.

• We updated the structure of our proposed solution so that our two sub-
solutions were more clear (one focused on optimization, the other on flex-
ibility).

• We added more to the timeline after thinking more about what we would
really need to do during Winter and Spring quarters to stay on track.

• We added a proper title.

5 Changes Made After to Instructor Feedback

• We went back to all the literature search sources we found earlier in the
quarter and looked at some new articles that our grad mentor Mara sent
to us. We then referred to these sources in our paper and tried providing
a stronger background on the issue.

• We explained some concepts more and added many simplified examples
that might make understanding the topic easier.

• We restructured and rephrased some of the Problem Statement to show
that finding the brute force threshold was also a potential solution (not
just model counting). Earlier, it seemed as if model counting was our
entire proposed solution.

• Before, it was unclear how flexibility related to optimization. Thus, we ex-
plained how increased flexibility contributes to more scalable verification,
and altered the structure so it is clear that flexibility is also an important
part of our proposed solution.

• We resized and centered the images; more specifically, we made Figure 2
smaller and Figure 3 bigger.
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